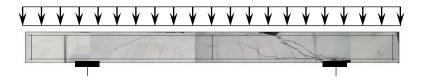
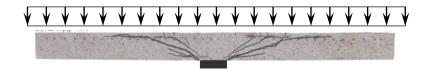


RETROFITTING SYSTEM FOR IMPROVING THE PUNCHING SHEAR AND SHEAR CAPACITY OF REINFORCED CONCRETE ELEMENTS

The RELAST system


Dr. Jochen Buhler

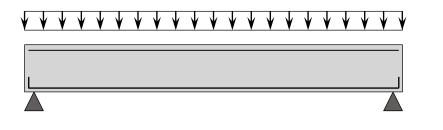


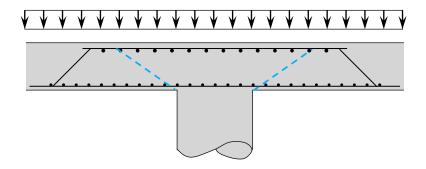
- Shear resistance of existing reinforced concrete (RC) elements.
- **Punching shear resistance** of existing reinforced concrete (RC) elements.

Beam

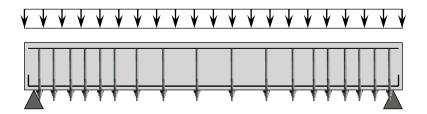
• Flat slab

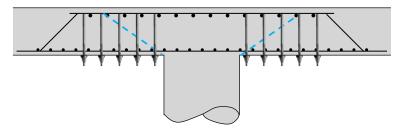
- **Shear resistance** of existing reinforced concrete (RC) elements.
- Beam


- **Punching shear resistance** of existing reinforced concrete (RC) elements.
- Flat slab



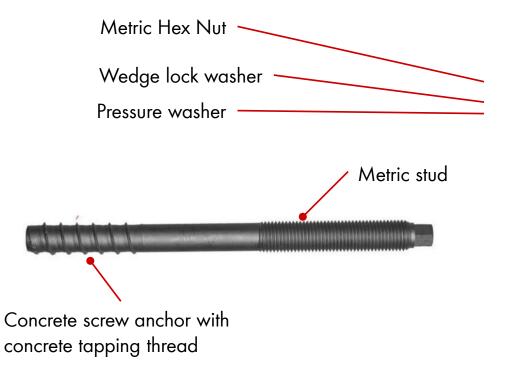
- Shear resistance of existing reinforced concrete (RC) elements.
- Beam without shear reinforcement


- **Punching shear resistance** of existing reinforced concrete (RC) elements.
- Flat slab without punching shear reinforcement


- Shear resistance of existing reinforced concrete (RC) elements.
- Beam with post-installed bonded concrete screw anchors used as shear reinforcement

up-to 100% against "without shear reinforcement"

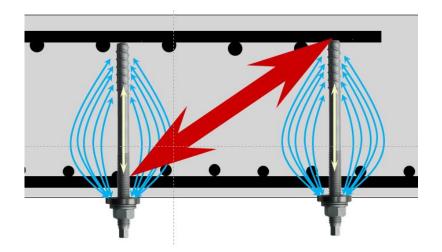
- **Punching shear resistance** of existing reinforced concrete (RC) elements.
- Flat slab with post-installed bonded concrete screw anchors used as punching shear reinforcement



up-to 40% against "without shear reinforcement"

THE RELAST SYSTEM? THE COMPONENTS.

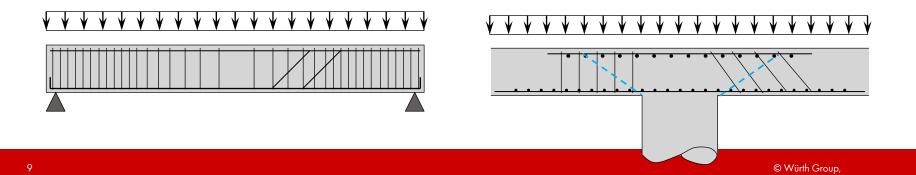
Fast curing Injectable Mortar



THE RELAST SYSTEM? LOAD TRANSFER

BONDED CONCRETE SCREW ANCHOR

DESIGNING EQUIVALENT TO EN1992-1-1


• Shear resistance of existing reinforced concrete (RC) elements:

Beam with shear reinforcement.

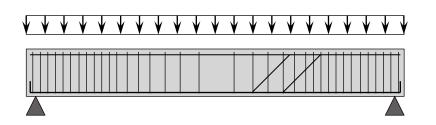
DESIGN CODE: EN 1992-1-1, SECTION 6.2 Shear

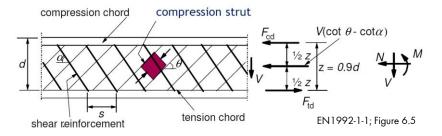
• **Punching shear resistance** of existing reinforced concrete (RC) elements:

Flat slab with punching shear reinforcement.

HOW DO YOU DESIGN THE SHEAR RESISTANCE?

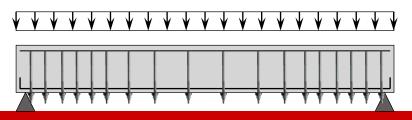
• **Shear resistance** of existing reinforced concrete (RC) elements:


Beam with shear reinforcement.


- DESIGN CODE: EN 1992-1-1, SECTION 6.2 Shear
- Strut-Tie model: Verification of
 - Compression strut

 $V_{Ed} \leq V_{Rd,c, max}$

• Tension tie

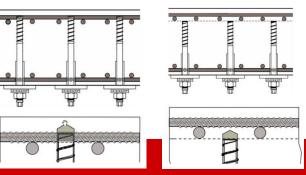


 $V_{Fd} \leq V_{Rd,s}$

• **Shear resistance** of existing reinforced concrete (RC) elements:

Beam with **RELAST improved shear** resistance.

- **DESIGN CODE:** EN1992-1-1, SECTION 6.2 Shear
- Strut-Tie model: Verification of
 - Compression strut $V_{Ed} \leq V_{Rd,c, max}$
 - Tension tie
- > APPROVAL:
 - Modification factors allowing an equivalent design.

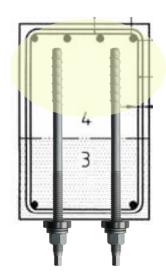


• $\theta = 45^{\circ}$

- a = 90° (Drilling perpendicular to surface)
- Resistance of tension tie

 $V_{Rd,s} = a_{sw} \cdot z \cdot f_{ywd,ef}$

- Modification in regards to
 - Material parameter of screw anchor.
 - Minimum and maximum spacing requirements.
 - Embedment position of screw anchor.



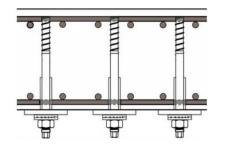
- $\theta = 45^{\circ}$
- a = 90° (Drilling perpendicular to surface)
- Resistance of tension tie

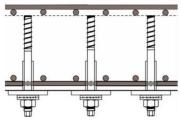
 $V_{Rd,s} = a_{sw} \cdot z \cdot f_{ywd,ef}$

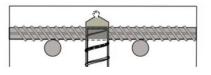
• Effective yield strength f_{ywd,ef}

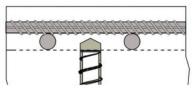
• Sufficient anchorage

- $\theta = 45^{\circ}$
- a = 90° (Drilling perpendicular to surface)
- Resistance of tension tie


 $V_{Rd,s} = a_{sw} \cdot z \cdot f_{ywd,ef}$


• Effective yield strength fywd,ef


$$f_{ywd,ef} = c_1 \frac{f_{ywk}}{\gamma_s} + c_2 \frac{1}{\rho_{sw}} \nu_1 f_{cd},$$


• Load factor c₁ the utilization of the screw

Screw	Core diameter d _{K,1} [mm]	Screw-in depth (in relation to the facing longitudinal reinforcement, see Annex 7)	Load factors c1 [-]
Würth RELAST	20.5	above	0.4097
22		below	0.2384
Würth RELAST	14.8	above	0.3925
16		below	0.3130

- $\theta = 45^{\circ}$
- a = 90° (Drilling perpendicular to surface)
- Resistance of tension tie

 $V_{Rd,s} = a_{sw} \cdot z \cdot f_{ywd,ef}$

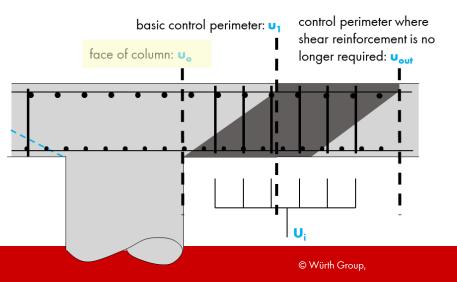
• Effective yield strength fywd,ef

 $f_{ywd,ef} = c_1 \frac{f_{ywk}}{\gamma_s} + c_2 \frac{1}{\rho_{sw}} \nu_1 f_{cd, \cdot}$

• Load factor $c_2 = 0.046$ related to concrete

f_{ywk} = 500N/mm²; C20/25

22	above	178N/mm²
22	below	104N/mm ²
16	above	171N/mm²
16	below	136N/mm ²


Check punching shear resistance at

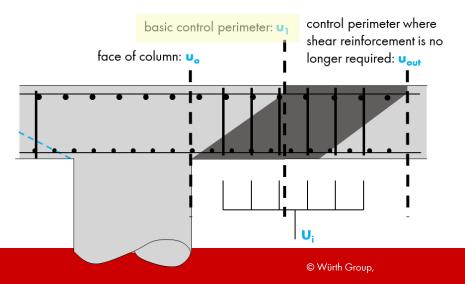
• Face of column **u**₀:

 $v_{Ed} \leq v_{Rd,c,max}$

• **Punching shear resistance** of existing reinforced concrete (RC) elements:

Flat slab with punching shear reinforcement.

Check punching shear resistance at


• Face of column \mathbf{u}_0 : $v_{Ed} \leq v_{Rd,c,max}$

Check if punching shear reinforcement is required at

• Basic control perimeter \mathbf{u}_1 : $v_{Ed} \leq v_{Rd,c}$

• **Punching shear resistance** of existing reinforced concrete (RC) elements:

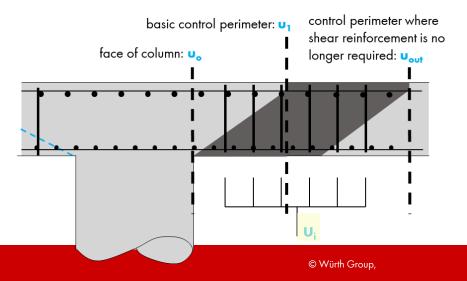
Flat slab with punching shear reinforcement.

Check punching shear resistance at

• Face of column \mathbf{u}_0 : $v_{Ed} \leq v_{Rd,c,max}$

Check if punching shear reinforcement is required at

• Basic control perimeter \mathbf{u}_1 : $v_{Ed} \leq v_{Rd,c}$


Check the improvement k_{max} with punching shear reinforcement and calculate it's required cross section at

Positions U_i:

$$v_{Ed} \leq \begin{cases} v_{Rd,cs} \\ k_{max} \cdot v_{Rd,c} \end{cases}$$

• **Punching shear resistance** of existing reinforced concrete (RC) elements:

Flat slab with punching shear reinforcement.

 $u_{out,ef} = \beta \frac{v_{ed}}{v_{Pd} c' d}$

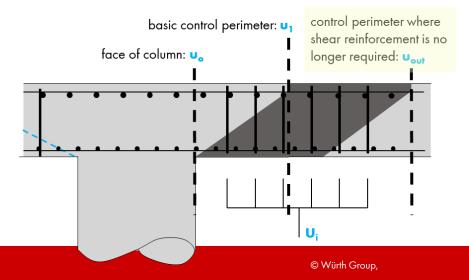
Check punching shear resistance at

• Face of column \mathbf{u}_0 : $v_{Ed} \leq v_{Rd,c,max}$

Check if punching shear reinforcement is required at

• Basic control perimeter \mathbf{u}_1 : $v_{Ed} \leq v_{Rd,c}$

```
Check the improvement k_{max} with punching shear reinforcement and calculate it's required cross section at
```


• Positions
$$\mathbf{U}_{\mathbf{i}}$$
: $v_{Ed} \leq \begin{cases} v_{Rd,cs} \\ k_{max} \cdot v_{Rd,c} \end{cases}$

Calculate the perimeter where shear reinforcement is no longer required

• Outermost control perimeter **U**_{out}:

• **Punching shear resistance** of existing reinforced concrete (RC) elements:

Flat slab with punching shear reinforcement.

• Face of column **u**₀:

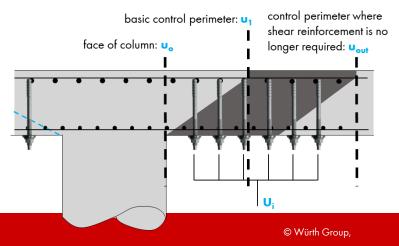
- $v_{Ed} \leq v_{Rd,c,max}$
- Basic control perimeter \mathbf{U}_1 : v_{Ed}
 - $v_{Ed} \leq v_{Rd,c}$

Positions U_i:

$$v_{Ed} \leq \begin{cases} v_{Rd,cs} \\ k_{max} \cdot v_{Rd,c} \end{cases}$$

Outermost control perimeter U_{out}:

$$u_{out,ef} = \beta \frac{V_{ed}}{v_{Rd,c} \cdot d}$$


• **Punching shear resistance** of existing reinforced concrete (RC) elements:

Flat slab with **RELAST improved punching shear** resistance.

- DESIGN CODE: EN 1992-1-1, SECTION 6.4 Punching
- > APPROVAL:

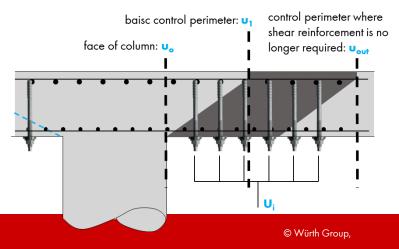
 \geq

> Modification factors allowing an equivalent design.

• Positions U_i:

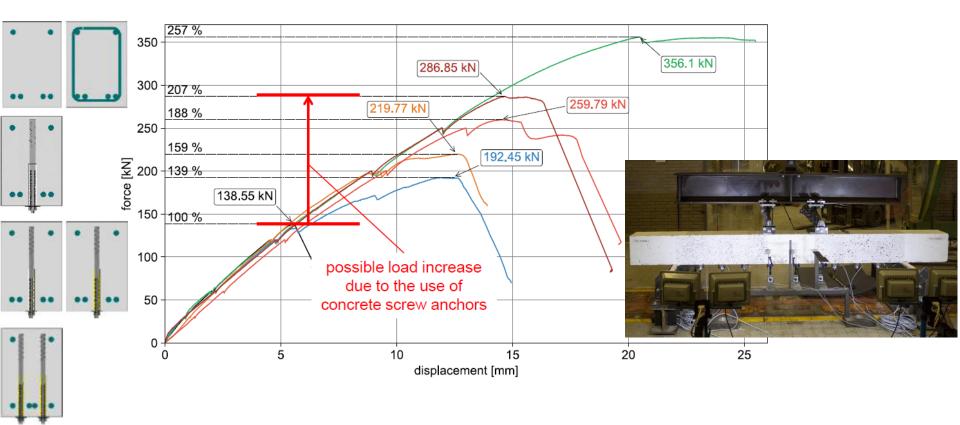
 $v_{Ed} \leq \begin{cases} v_{Rd,cs} \\ k_{max} \cdot v_{Rd,c} \end{cases}$

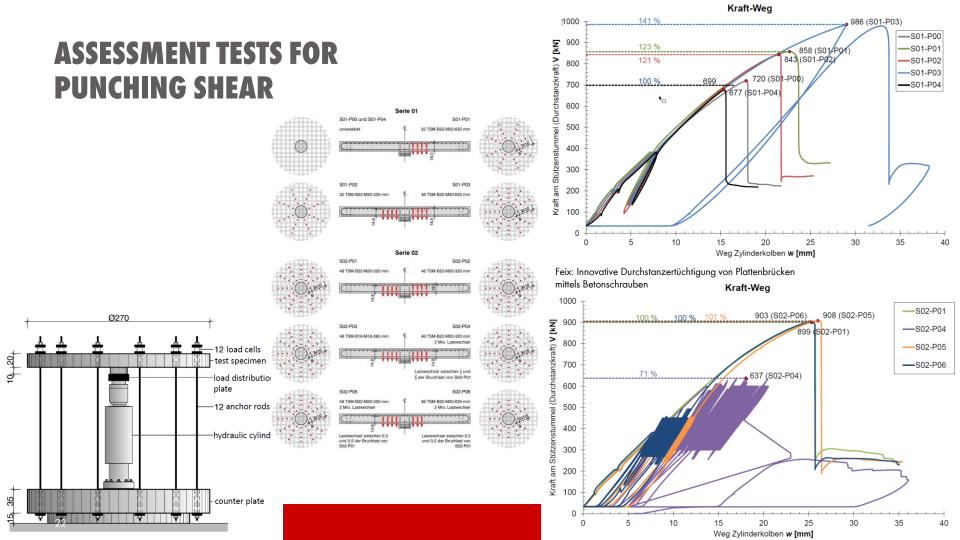
- Effectiveness factor: $k_{max} = 1.4$
- Calculation of the required reinforcement

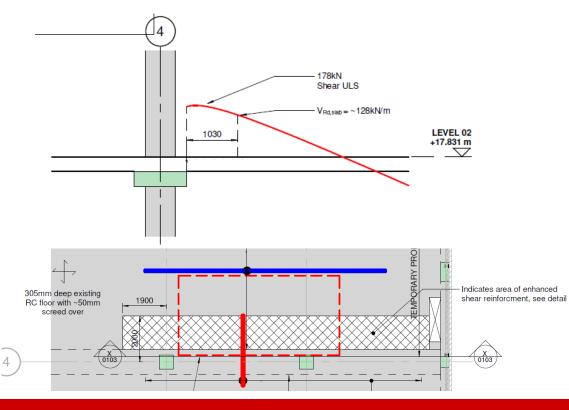

$$v_{Rd,cs} = 0.75 \cdot v_{Rd,c} + 1.5 \cdot \frac{d}{s_r} \cdot A_{SW} \cdot f_{ywd,ef} \cdot \frac{1}{u_1 d}$$

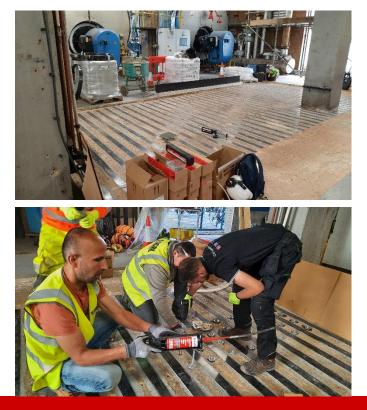
- Modification in regards to
 - Material parameter of screw anchor.
 - Minimum and maximum spacing requirements.

• **Punching shear resistance** of existing reinforced concrete (RC) elements:

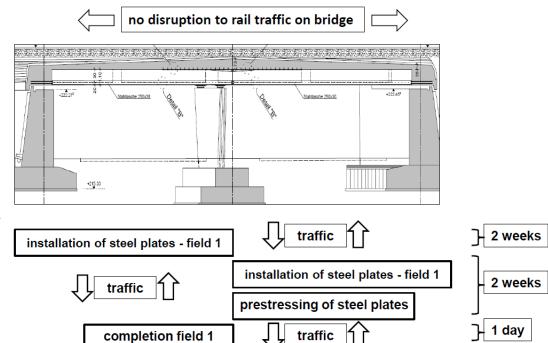

Flat slab with **RELAST improved punching shear** resistance.


- **DESIGN CODE: EN 1992-1-1, SECTION 6.4 Punching**
- > APPROVAL:
 - > Modification factors allowing an equivalent design.


ASSESSMENT TESTS FOR SHEAR

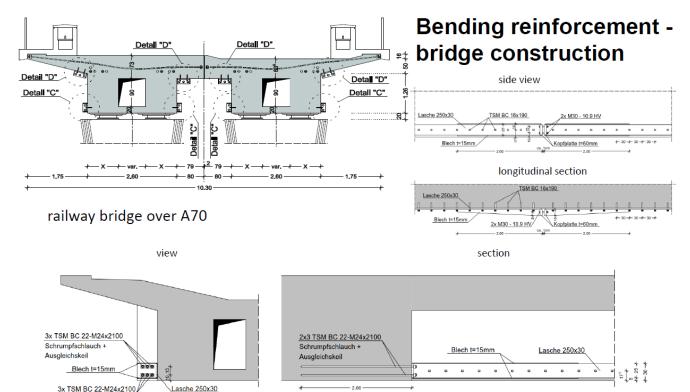


STRENGTHENING OF THE NEW BOILER ROOM CAMBRIDGE UNIVERSITY HOSPITALS ADDENBROOKE'S, UK

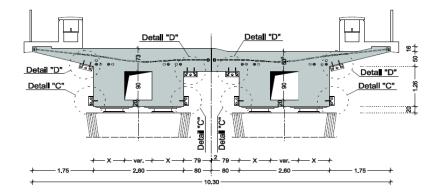


© Würth Group,

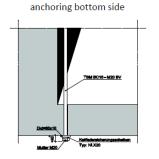
STRENGTHENING OF THE A70 RAILWAY BRIDGE

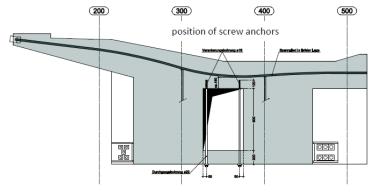

- Bridge designed for 35 passenger trains and 20 freight trains per day.
- Existing reinforcement shows stress corrosion.
- Risk of sudden collapse.
- Estimated cost of strengthening EUR 130'000.
 (4 weeks / CO₂ 295to.)
- Estimated cost of new bridges EUR 2.5m
 (1.5yrs / CO₂ 24'961to.)

REFERENCES



Schrumpfschlauch + 10 + + + + 10 Ausoleichskeil


© Würth Group,


REFERENCES

Shear reinforcement - bridge construction

railway bridge over A70

REFERENCES

Railway Bridge A70 – Retrofitting of Bridge in Service

SUMMARY

- Easy to install from where ever it is most convenient.
- Suitable for all type of static loads and fatigue with 5x10⁶ load cycles.
- Uses a standardized design concept EN1992. The improvement does not take existing reinforcement into account. Advantage when RC members were designed with different codes.
- RELAST system is independently assessed and approved.
- Maximum shear resistance improvement of **100%** for member thickness ≥200mm.
- Maximum punching shear resistance improvement of **40%**. For member thickness between 200 and 1100mm.
- Can be used in C5 environments (very strong corrosivity) acc. to ISO 9223.
- Improvement is activated immediately after installation.