

POST-INSTALLED CONSTRUCTION FIXINGS

EN1992-4 (Eurocode 2): Design of concrete structures - Part 4 : Design of fastenings for use in concrete

HISTORICAL OVERVIEW

EOTA ... European Organisation for Technical Assessment, ACI ... American Concrete Institute, SA ... Standards Australia, CEN ... European Committee for Standardization ETAG ... European Technical Approval Guideline, TR ... Technical Report, TS ... Technical Specification, AS ... Australian Standard

STANDARDS AND LAWS

STANDARDS AND LAWS

STANDARDS AND LAWS

FROM THE ASSESSMENT TO THE DESIGN

Compared According to Social Social Social Social Social Social Social Compared Openic According to Horizonto Social Soci
ETA-19/0542
of 6 November 2020
version in German language
Deutsches Institut für Bautechnik
Würth Injection system WIT-PE 1000 for concrete
Bonded fastener for use in concrete
Adolf Würth GmbH & Co. KG Reinhold-Würth-Straße 12-17 74653 Künzeleau DEUTSCHLAND
Werk 3
39 pages including 3 annexes which form an integral part of this assessment
EAD 330499-01-0601, Edition 4/2020
ETA-19/0542 issued on 28 April 2020

TECHNICAL PRODUCTS SPECIFICATION

DESIGN / VERIFICATION EN 1992-4 EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM July 2018 ICS 91.010.30: 91.080.40 Supersedes CEN/TS 1992-4-1:2009, CEN/TS 1992-4-2:2009, CEN/TS 1992-4-3:2009, CEN/TS 1992-4-4:2009, CEN/TS 1992-4-5:2009 English Version Eurocode 2 - Design of concrete structures - Part 4: Design of fastenings for use in concrete Eurocode 2 - Calcul des structures en béton - Partie 4 Conception et calcul des éléments de fixation pour béton Stahlbeton- und Spannbetontragwerken - Teil 4: Bemessung der Verankerung von Befestigungen in Beton This European Standard was approved by CEN on 9 March 2018. CEN members are bound to comply with the CEN/CENELC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same stants at the official versions. GN members are the national standards budies of Austria, Edgium, Budgaria, Creatis, Cyprus, Careh Republic Demante Entenia, Philande Former Yungarda Republic Penderaia, France Germany, Greese, Hengary, Iosand, Heisen, Walta, Lartha, Hathari, Larenhourg, Malta, Netherland, Nervey, Poland, Portugal, Romania, Serbia, Slovatia, Stovenia, Spain, Sweden, Svitzerland, Tarkey and United Kingdom. FUROPEAN COMMITTEE FOR STANDARD COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels © 2018 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No. EN 1992-4:2018 E

EAD ... European Assessment Doument; ETA ... European Technical Assessment; EN ... European Standard

RIGID ANCHOR PLATE - TENSION

EN1992-4

• 6.1 (5):

In general, **elastic analysis** may be used for establishing the loads on individual fasteners both at ultimate and serviceability limit states.

• 6.2.1 (1):

The design value of tension loads acting on each fastener due to the design values of normal forces and bending moments acting on a **rigid fixture** may be calculated assuming a **linear distribution of strains**.

• 6.2.1 (2):

The assumption in 6.2.1 (1) may be considered to be satisfied if the base plate remains elastic under design actions ($\sigma_{Ed} \leq \sigma_{Rd}$) and its deformation remains negligible in comparison with the axial displacement of the fasteners.

FORCES ACTING ON FASTENERS Tension Load

Base plate is sufficiently rigid such that linear strain distribution will be valid.

Rigid

Rigid Base Plate Rigid

FORCES ACTING ON FASTENERS Tension Load

Base plate is sufficiently rigid such that linear strain distribution will be valid.

Rigid Base Plate Rigid M_{Ed} C_{Ed} N_{Ed} Z

Acting Tension on fasteners is calculated from a linear correlation

anchor forces (linear)

DESIGN FORMAT AND SAFETY CONCEPT

DESIGN FORMAT Ultimate Limit State

Verification by the partial factor mether	od		
The limit states that concern ✓ the safety of people, and ✓ the safety of the structure shall be classified as ultimate limit s	l/or e states.		
Design value of effect of actions	$E_d \leq R_d$	Design value of resistances	(4.1)

DESIGN FORMAT Ultimate Limit State

Verification by the partial factor mether	nod $J_R = \int_S f_S$	$(s) \qquad \qquad$	
The limit states that concern ✓ the safety of people, and ✓ the safety of the structur shall be classified as ultimate limit s	d/or e states.	$\mu_{S} \qquad S_{k} \qquad R_{k} \qquad \mu_{R} \qquad R, S$ b) Partial safety factors	
Design value of effect of actions	$E_d \leq R_d$	Design value of resistances	(4.1)
Design value of effect of actions	$E_d \leq \frac{R_k}{\gamma_M}$	Characteristic value of resistances Partial safety factor for the resistances	(4.3)

f(a)

- \checkmark Structural and non-structural elements are covered.
- ✓ The support of the fixture can be either statically determinate or statically indeterminate.

REQUIRED VERIFICATIONS TENSION

17 Dr. Jochen Buhler

© Würth Group, 31.12.2021

7.2.1.4 Concrete cone failure

N _{Rk,c} =	$= N_{Rk,c}^0 \cdot \frac{A_{c,N}}{A_{c,N}^0}$	$\frac{1}{2} \cdot \psi_{s,N}$	$\cdot \psi_{re,N} \cdot$	$\cdot \psi_{ec,N} \cdot \psi_{M,N}$			(7.1)
	$N_{Rk,c}^0 = k_1$	$\cdot \sqrt{f_{ck}}$	$\cdot h_{ef}^{1.5}$		Characteristic placed in concre	c resistance of a single fastener ete and not influenced by adjacent fasteners or edges of the concrete member.	(7.2)
	$\frac{A_{c,I}}{A_{c,I}^0}$	V V			Geometric ef	fect of axial spacing and edge distance.	
		$\psi_{s,N}$	= 0.7 +	$-0.3\frac{c}{c_{cr,N}} \le 1.0$	Distu proxi	urbance of the distribution of stresses in the concrete due to the mity of an edge of the concrete member.	(7.4)
			$\psi_{re,N}$	$= 0.5 + \frac{h_{ef}}{200} \le 1.0$	Shel	l spalling factor.	(7.5)
				$\psi_{ec,N} = \frac{1}{1 + 2\left(\frac{e_N}{e_N}\right)}$	$\left(\frac{1}{s_{cr,N}}\right) \le 1.0$	Group effect when different tension loads are acting on the individual fasteners of a group.	(7.6)
				$\psi_{M,N}$		Effect of a compression force between fixture and concrete in cases of bending moments with or without axial force.	
1	9 Dr. Jochen Buh	ler				© Würth Group, 31.12.	.2021

7.2.1.4 Concrete cone failure

$N_{Rk,c} =$	$N^0_{Rk,c}$	$\cdot \frac{A_{c,N}}{A_{c,N}^0} \cdot \psi_{s,N} \cdot \psi_{re,N} \cdot \psi_{ec,N} \cdot \psi_{M,N}$		(7.1)
	$N^0_{Rk,c}$	$= k_1 \cdot \sqrt{f_{ck}} \cdot h_{ef}^{1.5}$	Characteristic resistance of a single fastener placed in concrete and not influenced by adjacent fasteners or edges of the concrete member.	(7.2)

(7.2) Characteristic resistance of a single fastener

The characteristic resistance for the concrete cone failure does not depend on anchor diameter and anchor type! Test results after Fuchs/Eligehausen/Breen (1995) 519 test series.

Mean failure load

$$N_{u,c}^0 = 13.5 \cdot \sqrt{f_{cc,200}} \cdot h_{ef}^{1.5}$$

5%-fractile of the failure load

$$N_{5\%}^{0} = k \cdot \sqrt{f_{cc,200}} \cdot h_{ef}^{1.5}$$

7.2.1.4 Concrete cone failure

$N_{Rk,c} =$	$N_{Rk,a}^0$	$\cdot \frac{A_{c,N}}{A_{c,N}^0} \cdot \psi_{s,N} \cdot \psi_{re,N} \cdot \psi_{ec,N}$	$_N\cdot\psi_{M,N}$		(7.1)
	N_{Rk}^0	$_{c} = k_{1} \cdot \sqrt{f_{ck}} \cdot h_{ef}^{1.5}$	Characteristic re placed in concrete c	sistance of a single fastener and not influenced by adjacent fasteners or edges of the concrete member.	(7.2)
		$k_1 = \begin{cases} k_{cr,N} = 7.7 \dots cr \\ k_{ucr,N} = 11.0 \dots \end{cases}$	acked concrete uncracked concrete	The factor k_{cr,N} only for anchors with ETA for cracked concrete .	@C E

7.2.1.4 Concrete cone failure

$N_{Rk,c} =$	$N^0_{Rk,c}$	$\cdot \frac{A_{c,N}}{A_{c,N}^0} \cdot \psi_{s,N}$	$\psi_{re,N} \cdot \psi_{re,N}$	$\psi_{ec,N}$.	$\psi_{M,N}$								(7.1)
	$N^0_{Rk,c}$	$= k_1 \cdot \sqrt{f_c}$	$_k \cdot h_{ef}^{1.5}$			C pl	haracte aced in c	e ristic re concrete c	sistance and not in	e of a si fluenced	n gle fas by adjace	tener ent fasteners or edges of the concrete member.	(7.2)
	$k_1 = \begin{cases} k_{cr,N} = 7.7 & \dots \text{ cracked concrete} \\ k_{ucr,N} = 11.0 & \dots \text{ uncracked concrete} \end{cases}$									ictor k_{ci}	, n only f	or anchors with ETA for cracked concrete.	₩ €€
			concrete C2	20/25									
		h _{ef}	mm	40	50	60	70	80	100	125	170		
		f_{ck}	N/mm ²			1	2	20					
		N ⁰ _{Rk,c}	kN	8.7	12.1	16.0	20.1	24.6	34.4	48.1	76.3		

Concrete failure and its partial safety factors

 $N_{Ed} \le N_{Rd,c} = \frac{N_{Rk,c}}{\gamma_{Mc}}$

 $\gamma_{M,c} = \gamma_c \cdot \gamma_{inst}$

Permanent and transient design situations

5

 $\gamma_{inst} \ge 1.0$

 $\gamma_c = 1.5$

E (E Assessment Type of expression of product Essential characteristic No method performance Basic Works Requirement 1: Mechanical resistance and stability Robustness 2.2.5 γinst [-]

GOOD TO KNOW Installation safety / Robustness

Concrete failure and its partial safety factors

 $\alpha = \tau m / \tau n$

$\gamma_{inst} \ge 1.0$

((

(Table 4.1)

1,00 0,90 0,80	γ ₄ = 1,0 (90%)	N°	Purpose of test	concrete	crack width [mm]	size	h _{ef}	n _{min}	rqd. α	Section	
0,70	γ ₂ = 1,2 (75%) γ ₂ = 1,2 (65%)	R5	Reference for sensitivity to reduced cleaning effort	C20/25	0	s/m/l	max	5	-	2.2.5	
0,50		B6	Robustness in dry concrete	C20/25	0	s/m/l	max ²⁾	5		2.2.5.2	
0,40		В7	Robustness in water saturated concrete	C20/25	0	s/m/l	max ²⁾	5	see	2.2.5.3	
0,20		B8	Robustness in water filled holes (clean water)	C20/25	0	s/m/l	max ²⁾	5	Table 2.4	2.2.5.4	EAD
0,00 6 8 10 12 14 16 18 20 22 Diameter [mm]	24 26 28 30 32 34	В9	Robustness to mixing technique	C20/25	0	m	max ²⁾	5		2.2.5.5	
Table 2.4 Values of ro	d. α in the sensitivity to robu	stness	tests for bonded fastener	s	•	·					
factor γinst	rqd. α for tests acco	rding t	o Table A.1, respectively								
1,0	≥ 0,95		≥ 0,90		The	robus	tness f	factor	depend	s on the	
1,2	≥ 0,80		\geq 0,75		anchor diameter and anchor type.		r type.				
1,4	≥ 0,70		≥ 0,65								

Concrete failure and its partial safety factors

$N_{Rk,c} = N_{L}$	$A_{Rk,c}^{0} \cdot \frac{A_{c,N}}{A_{c,N}^{0}}$	$\frac{\Psi}{N}\cdot\psi_{s,N}\cdot$	$\psi_{re,N} \cdot \gamma$	$\psi_{ec,N}\cdot\psi_{M,N}$				(7.1)
$\gamma_{M,c} = \gamma_c$	$\gamma_{M,c} = \gamma_c \cdot \gamma_{inst}$ $\gamma_c = 1.5$		Perm	anent and tra	ansient design	$\gamma_{M,c} = \gamma_c \cdot \gamma_{inst}$ $\gamma_c = 1.2$	Accidential design situations	
$\gamma_c = 1.5$			Sirua	nons		Υ _c	Seismic design situations EN 1998	
$\gamma_{inst} \geq 1.0$	0						E CE	(Table 4.1
	Yinst	1.0	1.2	1.4				
	Ym,c	1.5	1.8	2.1				

7.2.1.4 Concrete cone failure

$N_{Rk,c} =$	$N^0_{Rk,c}$	$\frac{A_{c,N}}{A_{c,N}^0}$	$\psi_{s,N}\cdot\psi_{re,N}\cdot\psi_{ec,N}\cdot\psi_{M,N}$		(7.1)
	$N^0_{Rk,c}$	$= k_1 \cdot k_1$	$\sqrt{f_{ck}} \cdot h_{ef}^{1.5}$	Characteristic resistance of a single fastener placed in concrete and not influenced by adjacent fasteners or edges of the concrete member.	(7.2)
		$k_1 = \langle$	$\begin{cases} k_{cr,N} = 7.7 & \dots \text{ cracked concrete} \\ k_{ucr,N} = 11.0 & \dots \text{ uncracked concrete} \end{cases}$	e ncrete	: ()

Cracked concrete C20/25

h _{ef}	mm	40	50	60	70	80	100	125	170		
f _{ck}	N/mm ²		20								
N ⁰ _{Rk,c}	kN	8.7	12.1	16.0	20.1	24.6	34.4	48.1	76.3		
Үм,с			1.5								
N ⁰ _{Rd,c}	kN	5.8	8.1	10.6	13.4	16.4	22.9	32.0	50.8		

7.2.1.4 Concrete cone failure

er												
f_{ck}	N/mm²		20									
N ⁰ _{Rk,c}	kN	8.7	12.1	16.0	20.1	24.6	34.4	48.1	76.3			
Үм,с			1.5									
N ⁰ _{Rd,c}	kN	5.8	8.1	10.6	13.4	16.4	22.9	32.0	50.8			

CRACKED AND NON-CRACKED CONCRETE

REQUIREMENTS FOR ANCHOR DESIGN

• EN 1992-4

• 4.7 Determination of concrete condition

(1) In the region of the fastening the concrete may be cracked or uncracked. The condition of the concrete for the service life of the fastening shall be determined by the designer.

NOTE In general, it is conservative to assume that the concrete is cracked over its service life.

REQUIREMENTS FOR ANCHOR DESIGN

• EN 1992-4

• 4.7 Determination of concrete condition

(2) Uncracked concrete may be assumed, if it is proven that under the characteristic combination of loading at serviceability limit state, the fastener with its entire embedment depth is located in uncracked concrete. This will be satisfied if

$\sigma_{L} + \sigma_{R} \leq \sigma_{adm}$

is observed (compressive stresses are negative).

where σ_L ... is the stress in the concrete induced by external loads **including fastener loads** σ_R ... is the stress in the concrete due to restraint of intrinsic imposed deformations (e.g. shrinkage of concrete) or extrinsic imposed deformations (e.g. due to displacement of support or temperature variations). If no detailed analysis is conducted, then $\sigma_R = 3N/mm^2$ should be assumed;

 σ_{adm} ... is the admissible tensile stress for the definition of uncracked concrete.

NOTE The recommended value is $\sigma_{adm} = 0$ and is based on the characteristic combination of loading at the serviceability limit state.

ANCHORS IN CONCRETE

• ... including fastener loads.

Any tensile stresses already present due to structure loading, restraint of thermal movement, etc., will be superimposed on the anchor-induced stress state, thus leading to a loss of capacity.

REINFORCED CONCRETE DESIGN

• EN 1992-1-1

• 7.3 Crack control

7.3.1 General considerations

(1) Cracking shall be **limited** to an extent that will not impair the proper functioning or durability of the structure or cause its appearance to be unacceptable.

(2) Cracking is **normal** in reinforced concrete structures subject to bending, shear, torsion or tension resulting from either direct loading or restraint or imposed deformations.

(3) Cracks may also arise from other causes such as plastic shrinkage or expansive chemical reactions within the hardened concrete. Such cracks may be unacceptably large but their avoidance and control lie outside the scope of this Section.

REINFORCED CONCRETE DESIGN

• EN 1992-1-1

- 7.3 Crack control
- 7.3.1 General considerations

(4) Cracks may be permitted to form without any attempt to **control their width**, provided they do not impair the functioning of the structure.

(5) A limiting value, $w_{max} = 0.3mm$, for the calculated crack width, w_k , taking into account the proposed function and nature of the structure and the costs of limiting cracking, should be established.

ANCHORS IN CONCRETE

• There is a relatively high probability that cracks will intersect the anchor location.

Anchors loaded
Anchors expanded, unloaded

O Drillhole

b)

Eligehausen et al.: Anchorage in Concrete Construction. Ernst & Sohn Verlag, 2006.

N°	Purpose of test	concrete	crack width [mm]	size 2)	h _{ef}	n _{min}	rqd. α	Section
Reference tests (confined test setup)								
R1	Bond strength with confined test setup	C20/25	0	All	7d ¹⁾	5	-	2.2.2.1
R2		C50/60	0	s/m/l	7d ¹⁾	5	-	
R3		C20/25	0,3	s/m/l	7d ¹⁾	5	-	
R4		C50/60	0,3	s/m/l	7d ¹⁾	5	-	
Basic tension tests with unconfined test setup								
A1	Characteristic resistance for tension loading not influenced by edge and spacing effects	C20/25	0	s/m/l	min	5	-	2.2.2.2
A2		C50/60	0	s/m/l	min	5	-	
A3		C20/25	0,3	s/m/l	min	5	-	
A4		C50/60	0,3	s/m/l	min	5	-	
Resistance to pull-out failure								
B10	Increased crack width	C20/25	0,5	s/m/l	7d ¹⁾	5	0,80	2.2.2.3
B11	Increased crack width	C5≬/60	0,5	s/m/l	7d ¹⁾	5	0,80	2.2.2.3
B12	Repeated loads	C20/25	0	m	7d ¹⁾	5	1,00	2.2.2.4
B13	Crack cycling under load	C20/25	0,1 - 0,3	All	7d ¹⁾	5	0,90	2.2.2.5

Consequences for the anchor testing:

- Permanent loads are causing static cracks.
- Slowly varying live loads are causing the crack opening and closing.

EAD 330499-01-0601: BONDED FASTENERS FOR USE IN CONCRETE

• on torque-controlled expansion anchors developed for **uncracked** concrete.

• on torque-controlled expansion anchors developed for cracked concrete.

Eligehausen et al.: Anchorage in Concrete Construction. Ernst & Sohn Verlag, 2006.

• Summary

ANCHORS SUITABLE FOR CRACKED CONCRETE

Geometric effect of axial spacing and edge distance.

Good to know Idealized concrete cone and area $A^0_{\ c,N}$ of concrete cone of an individual fastener

Good to know Idealized concrete cone and area $A^0_{c,N}$ of concrete cone of an individual fastener

Good to know Idealized concrete cone and area A⁰_{c,N} of concrete cone of an individual fastener

Good to know Actual area $A_{c,N}$ of the idealized concrete cone for a group of fasteners

Characteristic spacing $s_{cr,N}$ and characteristic edge distance $c_{cr,N} = 0.5 s_{cr,N}$ Characteristic spacing $s_{cr,N} = 3h_{ef}$ $A_{c,N}^0 = s_{cr,N} \cdot s_{cr,N}$ Actual projected area $A_{c,N} = s_{cr,N} (c_{cr,N} + s_{cr,N} + 0.5 s_{cr,N})$ Reference projected area $= 2 \cdot s_{cr,N} \cdot s_{cr,N}$ $3h_{ef} = s_{cr,N}$ $3h_{ef} = s_{cr,N}$

45

Good to know Actual area $A_{c,N}$ of the idealized concrete cone for a group of fasteners

Actual projected area $A_{c,N} = s_{cr,N} (c_{cr,N} + s + 0.5s_{cr,N})$

 $s \le s_{cr,N}$

Actual projected area $A_{c,N} = s_{cr,N} (\mathbf{c} + s + 0.5 s_{cr,N})$ $s \le s_{cr,N}$ c ≤ c_{cr,N}

WÜRTH 븆 GROUP

VERIFICATION OF ULTIMATE LIMIT STATE Tension Load

Good to know Actual area $A_{c,N}$ of the idealized concrete cone for a group of four fasteners

Concrete splitting during installation

is avoided by complying with minimum values for **edge distances** $c_{min'}$ **spacing** $s_{min'}$ **member thickness** h_{min} and requirements for reinforcement as given in the relevant European Technical Product Specification.

CONCRETE SPLITTING DURING INSTALLATION